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1. Sets and Elements

A set is a collection of elements. The elements of a set are sometimes called
members or points. We assume that we can distinguish between different elements,
and that we can determine whether or not a given element is in a given set.

The relationship of two elements a and b being the same is equality and is denoted
a = b. The negation of this relation is denoted a ̸= b, that is, a ̸= b means that it
is not the case that a = b.

The relationship of an element a being a member of a set A is containment and
is denoted a ∈ A. The negation of this relation is denoted b /∈ A, that is, b /∈ A
means that it is not the case that b ∈ A.

A set is determined by the elements it contains. That is, two sets are considered
equal if and only if they contain the same elements. We use the symbols “⇒” to
mean “implies”, and “⇔” to mean “if and only if”. Then

A = B ⇔ (a ∈ A ⇔ a ∈ B);

in English, “A equals B if and only if (a is in A if and only if b is in B)”.
Thus we should not think of a set as a “container”, but rather as the things being

contained. For example, consider a glass of water, and the set of water molecules
in the glass. If we pour all of the water into an empty bowl, the bowl now contains
the same set of water molecules.

One way of describing a set is by explicitly listing its members. Such lists are
surrounded by braces, e.g., the set of the first five prime integers is {2, 3, 5, 7, 11}.
If the pattern is clear, we may use dots; for example, to label the set of all prime
numbers as P , we may write P = {2, 3, 5, 7, 11, 13, . . . }. Thus 2 ∈ P and 23 ∈ P ,
but 1 /∈ P and 21 /∈ P . As another example, if we denote the set of all integers by Z,
we may write Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }. Note that the order of elements in
a list is irrelevant in determining a set, for example, {5, 3, 7, 11, 2} = {2, 3, 5, 7, 11}.
Also, there is no such thing as the “multiplicity” of an element in a set, for example
{1, 3, 2, 2, 1} = {1, 2, 3}.
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2. Subsets

If A and B are sets and all of the elements in A are also contained in B, we say
that A is a subset of B or that A is contained in B and write A ⊂ B:

A ⊂ B ⇔ (a ∈ A ⇒ a ∈ B);

in English, “A is contained in B if and only (a is in A implies a is in B)”.
For example, {1, 3, 5} ⊂ {1, 2, 3, 4, 5}. Note that any set is a subset of itself. We

say that A is a proper subset of B is A ⊂ B but A ̸= B.
It follows immediately from the definition of subset that

A = B ⇔ (A ⊂ B and B ⊂ A);

in English, “A equals B if and only if (A is a subset of B and B is a subset of A).”
Thus to show that two sets are equal, it suffices to show that each is contained

in the other.
A set containing no elements is called the empty set and is denoted ∅. Since a

set is determined by its elements, there is only one empty set. Note that the empty
set is a subset of any set.

3. Set Operations

We may construct new sets as subsets of existing sets by specifying properties.
Specifically, we may have a proposition p(x) which is true for some elements x in a
set X and not true for others. Then we may construct the set

{x ∈ X | p(x) is true};
this is read “the set of x in X such that p(x)”. The construction of this set is called
specification. For example, if we let Z be the set of integers, the set P of all prime
numbers could be specified as P = {n ∈ Z | n is prime}.

Let A and B be subsets of some “universal set” U and define the following set
operations:

Union: A ∪B = {x ∈ U | x ∈ A or x ∈ B}
Intersection: A ∩B = {x ∈ U | x ∈ A and x ∈ B}
Complement: A∖B = {x ∈ U | x ∈ A and x /∈ B}

The pictures which correspond to these operations are called Venn diagrams.

Example 1. Let A = {1, 3, 5, 7, 9}, B = {1, 2, 3, 4, 5}. Then A ∩ B = {1, 3, 5},
A ∪B = {1, 2, 3, 4, 5, 7, 9}, A∖B = {7, 9}, and B ∖A = {2, 4}. □

Example 2. Let A and B be two distinct nonparallel lines in a plane. We may
consider A and B as sets of points. Their intersection is a set containing a sin-
gle point, their union is a set consisting of all points on crossing lines, and the
complement of A with respect to B is A minus the point of intersection. □

If A ∩B = ∅, we say that A and B are disjoint.

Example 3. A sphere is the set of points in space equidistant from a given point,
called its center; the common distance to the center is called that radius of the
sphere. Thus a sphere is the surface of a solid ball.

Take two points in space such that the distance between them is 10, and imagine
two spheres centered at these points. Let one of the spheres have radius 5. If the
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radius of the other sphere is less than 5 or greater than 15, then the spheres are
disjoint. If the radius of the other sphere is exactly 5 or 15, the intersection is a
single point. If the radius of the other sphere is between 5 and 15, the spheres
intersect in a circle. □

The following properties are sometimes useful.

• A = A ∪A = A ∩A
• ∅ ∩A = ∅
• ∅ ∪A = A
• A ⊂ B ⇔ A ∩B = A
• A ⊂ B ⇔ A ∪B = B

The following properties state that union and intersection are commutative and
associative operations, and that they distribute over each other. These properties
are intuitively clear via Venn diagrams.

• A ∩B = B ∩A
• A ∪B = B ∪A
• (A ∩B) ∩ C = A ∩ (B ∩ C)
• (A ∪B) ∪ C = A ∪ (B ∪ C)
• (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C)
• (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C)

Since (A∩B)∩C = A∩ (B∩C), parentheses are useless and we write A∩B∩C.
This extends to four sets, five sets, and so on. Similar remarks apply to unions.

The following properties of complement are known as DeMorgan’s Laws. You
should draw Venn diagrams of these situations to convince yourself that these prop-
erties are true.

• A∖ (B ∪ C) = (A∖B) ∩ (A∖ C)
• A∖ (B ∩ C) = (A∖B) ∪ (A∖ C)

Here are a few more properties of complement:

• A ⊂ B ⇒ A ∪ (B ∖A) = B;
• A ⊂ B ⇒ A ∩ (B ∖A) = ∅;
• A∖ (B ∖ C) = (A∖B) ∪ (A ∩B ∩ C);
• (A∖B)∖ C = A∖ (B ∪ C).
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4. Cartesian Product

Let a and b be elements. The ordered pair of a and b is denoted (a, b) and is
defined as

(a, b) = {{a}, {a, b}}.
This is the technical definition; think about how it relates to the intuitive approach
below.

Intuitively, if a and b are elements, the ordered pair with first coordinate a and
second coordinate b is something like a set containing a and b, but in such a way
that the order matters. We denote this ordered pair by (a, b) and declare that it
has the following “defining property”:

(a, b) = (c, d) ⇔ (a = c and b = d).

The cartesian product of the sets A and B is denoted A × B and is defined to
be the set of all ordered pairs whose first coordinate is in A and whose second
coordinate is in B:

A×B = {(a, b) | a ∈ A, b ∈ B}.

Example 4. Let A = {1, 3, 5} and let B = {1, 4}. Then
A×B = {(1, 1), (1, 4), (3, 1), (3, 4), (5, 1), (5, 4)}.

In particular, this set contains 6 elements. □

In general, if A contains m elements and B contains n elements, where m and n
are natural numbers, then A × B contains mn elements. Consider the case where
A = B; then A×A contains m2 elements. We sometimes write A2 to mean A×A.

We have the following properties:

• (A ∪B)× C = (A× C) ∪ (B × C);
• (A ∩B)× C = (A× C) ∩ (B × C);
• A× (B ∪ C) = (A×B) ∪ (A× C);
• A× (B ∩ C) = (A×B) ∩ (A× C);
• (A ∩B)× (C ∩D) = (A× C) ∩ (B ×D).

The idea of cartesian product can be extended to k sets. Thus if A1, . . . , Ak are
sets, and ordered k-tuple from them is an a list (a1, . . . , ak), where a1 ∈ A1, a2 ∈
A2, . . . , ak ∈ Ak. The cartesian product of these sets is the set of all k-tuples from
them:

k

�
i=1

Ai = {(a1, . . . , ak) | ai ∈ Ai for i = 1, . . . , k}.

In this case,

|
k

�
i=1

ai| = Πk
i=1|Ai|.

In the case of taking the cartesian product of a set A with itself k times, the
product is denoted Ak. We may view Ak as the set of ordered sequences of elements
from A of length k:

Ak = {(a1, . . . , ak) | ai ∈ X}.



5

5. Numbers

The following familiar sets of numbers have standard names:

Natural Numbers: N = {0, 1, 2, 3, . . . }
Integers: Z = {. . . ,−2,−1, 0, 1, 2, . . . }

Rational Numbers: Q = {p
q
| p, q ∈ Z, q ̸= 0}

Real Numbers: R = { numbers given by decimal expansions }
Complex Numbers: C = {a+ ib | a, b ∈ R and i2 = −1}

We have N ⊂ Z ⊂ Q ⊂ R ⊂ C.
Standard notation gives subsets of the real numbers, called intervals:

• [a, b] = {x ∈ R | a ≤ x ≤ b} (closed)
• (a, b) = {x ∈ R | a < x < b} (open)
• [a, b) = {x ∈ R | a ≤ x < b}
• (a, b] = {x ∈ R | a < x ≤ b}
• (−∞, b] = {x ∈ R | x ≤ b} (closed)
• (−∞, b) = {x ∈ R | x < b} (open)
• [a,∞) = {x ∈ R | a ≤ x} (closed)
• (a,∞) = {x ∈ R | a < x} (open)

Example 5. Let A = [1, 5] be the closed interval of real numbers between 1 and 5
and let B = (10, 16) be the open interval of real numbers between 10 and 16. Let
C = A∪B. Let N be the set of natural numbers. How many elements are in C∩N?

Solution. We know that

C ∩ N = (A ∪B) ∩ N = (A ∩ N) ∪ (B ∩ N).

Now A ∩ N is the set of natural numbers between 1 and 5, inclusive, so A ∩ N =
{1, 2, 3, 4, 5}. Also, B∩N is the set of natural number between 10 and 16, exclusive,
so B ∩ N = {11, 12, 13, 14, 15}. Now C ∩ N is the union of these set, so C ∩ N =
{1, 2, 3, 4, 5, 11, 12, 13, 14, 15}. Therefore C ∩ N has 10 elements. □

Example 6. Let A = [1, 4] and B = [3, 8) be intervals of real numbers. We will
see how to view A×B as a square in the cartesian plane R2 which has a boundary
on three sides but not of the fourth. How many elements are in (A×B)∩ (Z×Z)?

Solution. By a previously stated property of cartesian product, we have

(A×B) ∩ (Z× Z) = (A ∩ Z)× (B ∩ Z).

Now A × Z = {1, 2, 3, 4} and B × Z = {3, 4, 5, 6, 7}. Thus (A × B) ∩ (Z × Z) has
4 · 5 = 20 elements. □

Warning 1. The notation for ordered pair (a, b) is the same as the standard
notation for open interval of real numbers, but its meaning is entirely different.
This is standard, and you must decide from the context which meaning is intended.
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6. Cardinality

The cardinality of a set is the number of elements in it. A set is finite if the exists
a natural number n ∈ N such that the cardinality of the set is n. Otherwise, it is
infinite. It should be noted that there are levels of infinity; that is, there are infinite
sets such that one has greater cardinality than the other. We will not investigate
this further here.

Set operations relate to cardinality in various ways. Contemplate why each of
the following is true.

• |A ∪B| ≤ |A|+ |B|
• |A ∩B| ≤ min{|A|, |B|}
• |A∖B| ≤ |A|
• |A ∪B| = |A|+ |B| − |A ∩B|

The inclusion-exclusion principle states the cardinality of a union of sets. The
first two are given.

• |A ∪B| = |A|+ |B| − |A ∩B|
• |A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |B ∩ C| − |A ∩ C|+ |A ∩B ∩ C|

7. Collections

7.1. Collections. A collection is a set whose elements are themselves sets.
The power set of a set X is the collection of all subsets of a given set:

P(X) = { sets A | A ⊂ X}.
Let X be finite set containing n elements, so that |X| = n.
A subset of X may be viewed as a choice, for each element of X, as to whether

or not the the element is in the subset. Viewed in this way, we make 2n choices to
determine a subset of X, so

|P(X)| = 2n.

Let Pk(X) denote the set of all subsets of X which contain k elements:

Pk(X) = {A ∈ P(X) | |A| = k}.
There are n choose k ways to select the elements of a member of Pk(X), so

|Pk(X)| =
(
n

k

)
.

7.2. Partitions. Let X be a nonempty set. A partition of X is a collection of
nonempty subsets of X, known as blocks, such that every element of X is in exactly
one block. Thus, C ⊂ P(X) is a partition of X if both these conditions hold:

(1)
⋃

C∈C C = X;
(2) C1, C2 ∈ C and C1 ̸= C2 ⇒ C1 ∩ C2 = ∅.

Thus a partition covers X with nonoverlapping blocks.
If C is a partition of X, then

|X| =
∑
C∈C

|C|.

Note that the sets Pk(X), for k = 0, . . . , n, form a partition of P(X). Thus

2n =

n∑
k=0

(
n

k

)
.
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8. Functions

8.1. Functions. A function from a set A to a set B is an assignment of each
element of A to a unique element of B. The notation f : A → B means “f is a
function from A to B”.

Let f : A → B. If a ∈ A, the unique element of B to which a is assigned is
denoted f(a).

We call A the domain of f , and we call B the codomain of f . The domain of f
is often denoted dom(f). The range of f is the subset of B given by

range(f) = {b ∈ B | b = f(a) for some a ∈ A}.

The graph of f is the subset of A×B given by

graph(f) = {(a, b) ∈ A×B | b = f(a)}.

8.2. Images and Preimages. If C ⊂ A, the image of C under f is the subset of
the codomain B which consists of all the elements of B to which f assigns some
element from C:

f(C) = {b ∈ B | b = f(c) for some c ∈ C}.

If D ⊂ B, the preimage of D under f is the subset of the domain A which
consists of all the elements of A which are assigned by f to an element in D:

f−1(D) = {a ∈ A | f(a) ∈ D}.

8.3. Injections and Surjections. We say that f is injective (or one-to-one) if

f(a1) = f(a2) ⇒ a1 = a2,

where a1, a2 ∈ A.
We say that f is surjective (or onto) if

for every b ∈ B there exists a ∈ A such that f(a) = b.

We say that f is bijective if f is injective and surjective.
If A is a finite set, a function f : A → A is injective if and only if it is surjective.
Two sets have the same cardinality if and only if there exists a bijective function

between them:

|A| = |B| ⇔ there exists bijective f : A → B.

A bijective function between two sets creates a correspondence between them.

8.4. Sets of Functions. Let A and B be sets. The set of all functions between
then is

F(A,B) = { functions f : A → B}.
The set of all injective functions between them is

J(A,B) = { functions f : A → B | f is injective }.

Suppose |A| = k and |B| = n. Counting principles imply that

|F(A,B)| = nk and |J(A,B)| = n!

(n− k)!
,

except when k > n, in which case J(A,B) = ∅.
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9. Exercises

Exercise 1. Let A = {4, 5, 6, 7, 8, 9, 10, 11}, B = {2, 4, 6, 8, 10, 12, 14, 16}, and
C = {3, 6, 9, 12, 15, 18, 21}.
Find the indicated set.

(a) (A ∩B)∖ C
(b) A∖ (B ∪ C)
(c) (A∖B) ∪ C

Exercise 2. Let A = [0, 5], B = (2, 7), C = (6, 9), and D = {1, 3, 4, 7}. Find each
of the following sets.

(a) (A ∪B)∖D
(b) B ∪ (C ∩D)
(C) A∖D
(D) (A ∪ C)∖D

Exercise 3. Let A = {x ∈ R | −3 ≤ x < 7} and B = {x ∈ R | 1 < x ≤ 5}.
Find the indicated set.

(a) A
(b) B
(c) A ∪B
(d) A ∩B
(e) A∖B

Exercise 4. Let A = {1, 2, 3, 4, 5, 6} and B = {1, 3, 5, 7, 9, 11}.
Find C = (A ∪B)∖ (A ∩B).

Exercise 5. Let D = [2, 10] and E = (π, 8]. Find F = (D ∖ E)∖ Z.

Exercise 6. Sketch the graph of the set [1, 3]× ([1, 4]∖ [2, 3]) as a subset of R2.

Exercise 7. Sketch the graph of the set

([1, 5]∖ (2, 4))× ({1, 3} ∪ [4, 5]).

Exercise 8. Let A = [2, 3) ∪ {4} ∪ (5, 6]. Sketch the graph of the set A×A.

Exercise 9. Draw Venn diagrams which demonstrate the following equations.

(a) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
(b) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
(c) A∖ (B ∪ C) = (A∖B) ∩ (A∖ C)
(d) A∖ (B ∩ C) = (A∖B) ∪ (A∖ C)

Exercise 10. Let A and B be subsets of a set U . The symmetric difference of A
and B, denoted A△B, is the set of points in U which are in either A or B but not
in both.

(a) Draw a Venn diagram describing A△B.
(b) Find two set expressions which could be used to define A△B. These ex-

pressions may use A, B, union, intersection, complement, and parentheses,
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